Head Tracker 1 protocol
General information

This revision was published on 25th October 2023. The gesture flags have been revised, and some readback
messages have been added, to ensure compatibility with firmware version 0.69.

Form of messages

Supperware Head Tracker 1 communicates using MIDI System Exclusive messages:

fo 00 21 42 <message type> [other data] 7

Messages directed to the head tracker have message types below 0x40; responses from it have
message types of 0x40 or more.

Although the head tracker's firmware is user-upgradeable, the management of this relies on
universal System Exclusive messages, which are out of the scope of this document.

Instant gratification

All sensors and data output are turned off by default. Most users may simply want a continual
output of head orientation at around 50Hz. The transactions required to do this are as follows:

Reset; turn on all sensors and processing; enable yaw, pitch, and roll output at 50Hz:

fo 00 21 42 00 00 48 01 01 f7
(2400 3366 @0 © 721 1 247)

As above, but enable quaternion output instead:

fo 00 21 42 00 00 48 01 05 f7
(200 3366 © © 721 5 247)

Here is a slightly more involved example, which enables yaw, pitch, and roll output at
100Hz, turns off the compass, and turns on shake-to-zero:

fo 00 21 42 00 00 68 ©3 20 04 18 01 01 f7
(200 3366 © © 104 332 424 1 1 247)

The head tracker will immediately start sending data. Zero it (when ready):

fo 00 21 42 o1 0@ o1 f7
(2400 3366 1 © 1 247)

14-bit fixed-point numbers

Wherever used, 14-bit numbers are two's complement signed and given in big-endian form.
There is one sign bit, two integer bits and eleven signed bits (Q2.11), so that a number
between -4 and almost +4 can be expressed to an accuracy of about +0.0005.

First byte BMXX XXXX
Second byte @XXX XXXL

(M and L denote the most and least significant bits.) These numbers can be converted to a
floating-point number using the following code. Brackets are added for clarity:
int i = (128 * first_byte) + second_byte;

if (i >= 8192) { i -= 16384; }
float f = i / 2048.0f;

Tait-Bryan angles

Tait-Bryan angles, used by the head tracker to provide yaw, pitch, and roll, are the ZXY class of
Euler angle. Precise head orientation is obtained by applying the three rotations in the
following order. The arrows indicate the direction of a positive rotation:

YAW PITCH ROLL

Successive rotations are fixed with respect to the head, not the world. The order is important,
because ‘pitch 45 degrees then roll 45 degrees’ (as employed by the tracker) places one’s head
in a different orientation from ‘roll 45 degrees then pitch 45 degrees.’

Handling 3D rotations is mathematically equally burdensome in any format, but Tait-Bryan
angles present the most intuitive output. However, they should be used only if the head
tracker is not expected to deal with a very wide field of movement. Gimbal lock seriously
affects readings around £90 degrees of pitch. In other words, as you look at the ceiling or floor,
yaw and roll become exactly the same rotation. The remaining degree of freedom available to
your head is impossible to express. No other output format has this drawback.

Head tracker protocol
Messages in detail

Message 0 : Configure sensors and processing pipeline

(

fo 00 21 42 00
240 0 33 66 ©

<parameter> <value> [<parameter> <value> ...]
<parameter> <value> [<parameter> <value> ...]

Summary of Message 0 parameters

7
247

parameter function
0 Sensor setup
1 Data output and formatting
2 Calibrate gyroscope /
Save data to non-volatile storage
3 Compass control
4 Gestures / Chirality
5 New state (readback only)

)

Message 0 / Parameter 0 :
Sensor setup

6 5 4 3 2 1

RESET RATE SENSORS_ON 0 0

Writing to this address will always reinitialise the sensors, regardless of their current and
intended states.

bit 6 RESET
1: reset the head tracker to its power-on (or saved) defaults

bits 5:4 RATE : sensor output rate
00 : 50-52Hz (default)
01:25-26Hz
10:100-104Hz
11 : reserved (do not use)

bit 3 SENSORS_ON
0: reset/turn off all sensors (default)
1: reset/activate all sensors

bits 2:0 Reserved (set to 0)

Message 0 / Parameter 1:

Data output and formatting

4 3 2 1

RAW_FORMAT ORIENT_FORMAT TRACKING

bit 6

bits 5:4

bits 3:2

bits 1:0

Reserved (set to 0)

RAW_FORMAT : output raw sensor data

00 : do not output raw data (default)

01 : output raw sensor data, applying compass calibration
10 : output raw sensor data, without compass calibration
11 : reserved (do not use)

ORIENT_FORMAT : output format for orientation data
00 : Tait-Bryan angles

01 : Quaternions

10 : Orthogonal matrix

11 : reserved (do not use)

TRACKING : enable head tracking

00 : head tracking output is turned off (default)
01 : head tracking is turned on

10-11 : reserved (do not use)

Message 0 / Parameter 2 :
Calibrate gyroscope /
Reset non-volatile storage

6 5 4 3 2 1

PATTERN

This message requires the writing of a specific pattern.

bits 6-0 function
0x3C (60) One-time gyroscope calibration, and save. (Sensors must be
enabled for this to work).
Ox5A (90) Reset all saveable register values to factory defaults, and save.

Any other value written to this parameter will be ignored.

Message 0 / Parameter 3 :

Compass control

6

4 3 2 1 0

VERBOSE

COMPASS MODE FORCE_CAL COMPASS_STATE

Values written to the underlined registers are preserved in non-volatile memory.

bit 6

bits 5:3

bit 2

bits 1:0

VERBOSE
When set, any change in status sends out Readback message 5.
Defaultis 0.

COMPASS MODE
000-011: ignore this message. Otherwise:

Bit 4: 1 to turn compass on; 0 to turn compass off.
(If the data from the compass is invalid, it will be turned off anyway.)

Bit 3: Amount of yaw correction to use when compass is off:
0: slow central pull (0.3 degrees per second)
1: use no correction

FORCE_CAL

1: force a recalibration of the compass over the next 6 seconds.
The new calibration data is automatically saved.

Always read as 0.

COMPASS_STATE (readback only: writes are ignored)

00 : compass is turned off

01 : compass is on but poorly calibrated, so is hot being used
10 : compass is being used and is calibrated

11 : compass is currently in calibration mode

Note that SENSORS_ON (Message 0 Parameter 0) must be set in order for this command to
function correctly.

Message 0 / Parameter 4 :

Gestures

Chirality
6 4 3 2 1 0
0 GESTURES ON RIGHT EAR

Values written to the underlined registers are preserved in non-volatile memory.

bits 6:4

bits 4:2

bits 1:0

Reserved (set to 0)

GESTURES ON

000-011 : preserve the current value of GESTURES-ON
100 : gestures are turned off (default)

101 : reserved

110 : shake-to-zero gesture on

111 : reserved

RIGHT EAR

00-01 : preserve the current value of RIGHT_EAR
10 : Power cable is positioned over left ear (default)
11 : Power cable is positioned over right ear

Setting RIGHT_EAR effectively inverts the polarity of pitch and roll rotation, or its equivalent in

other modes, while yaw remains the same.

The shake-to-zero gesture can be activated by a double-shake of the head, or any other
repeated reciprocal movement (such as a nod or roll) will work. Shaking the head is easiest to

do consistently, though. Readback message 5 in verbose mode will output data about the

progression of this gesture:

A W N~ O

The head is still
Forward movement 1 detected

Reverse movement 1 detected

Forward movement 2 detected

Reverse movement 2 detected; head tracker about to zero

A successful gesture will cause the counter to advance from 0 to 4; an unsuccessful gesture will

abort because of insufficient speed, precision, or range of head movement before the counter

reaches 4.

Message 0 / Parameter 5 :

New state (readback only)

NEW_STATE

This parameter is sent by the head tracker as a readback message whenever its state has
changed, only if the VERBOSE bit (bit 6 of Parameter 3) is set.

bits 6:4 Always return 0
bits 3:0 NEW_STATE
0000 : Zero.Head tracker has just zeroed.
0001: Compass calibration started.
0010: Compass calibration successful.
0011: Compass calibration finished unsuccessfully.
(Head tracker will revert to the last good calibration).
0100: Compass data has become bad.
(Head tracker will stop using compass data:
This is the same as COMPASS_STATE 01).
0101: Compass data has recovered.
(Head tracker will start using compass data:
This is the same as COMPASS _STATE 10).
0110: Gyroscope calibration has finished.

1000 - 1100 : Stages 0-4 of shake-to-zero gesture.

Message 1 : Control during use

f0 00 21 42 01 <parameter> <value> [<parameter> <value> ...] 7
(240 @ 33 66 1 <parameter> <value> [<parameter> <value> ...] 247)

Summary of Message 1 parameters

parameter function

0 Zeroing

1 Travel mode

Message 1 / Parameter O :

Zeroing
6 5 4 3 2 1 0
0 0 0 0 0 0 ZERO

bit 0 ZERO : Set zero point
0 : No action
1 : Use most recent stable data as zero (level, straight ahead)

Message 1 / Parameter 1:
Travel mode

6 5 4 3 2 1 0
0 0 0 0 TRAVEL
bit 6:3 Reserved (set to 0)
bits 2:0 TRAVEL : automatic yaw correction when travelling

000-011 : preserve the current value of TRAVEL
100 : travel mode off (default)

101 : reserved (do not use)

110 : slow correction

111 : fast correction (preferred)

10

Message 2 : Readback

Read back calibration and configuration data.

(

fo 00 21 42 02
240 @ 33 66 2

Parameter
0x00
0x01
0x03
0x04
0x05

Ox11

<parameter> [<parameter> ...] f7
<parameter> [<parameter> ...] 247)
Meaning

Sensor setup (Message 0 / Parameter 0) readback

Data output and formatting (Message 0 / Parameter 1) readback
Compass (Message 0 / Parameter 3) readback

Gesture and chirality (Message 0 / Parameter 4) readback
Change in status readback. Not requested directly, but given

in verbose mode (see Message 0 / Parameter 3)

Travel mode (Message 1/ Parameter 1) readback

11

Message 64 : Head tracker data responses

Message 64 / Parameter O :
Orientation in Tait-Bryan Angles

fo 00 21 42 40 80 <14-bit yaw> <14-bit pitch> <14-bit roll> 7
(240 @ 33 66 64 @ <l14-bit yaw> <14-bit pitch> <14-bit roll> 247)

[13 bytes]

The data is given in radians in the Q2.11 format described in the ‘Number Formats’ section
earlier. This gives a maximum accuracy of 1/2048 radians, and the range is fixed to =m radians
so that numbers cannot overflow. For example:
180 degrees > mradians > 0x1922
Example: to obtain the data in degrees from the raw 14-bit input,

// convert signed 14-bit data (see page 1):

int i = (128 * d[@]) + d[1];

if (i >= 8192) { i -= 16384; }

// the head tracker produces its output in radians:
float f_radian = i / 2048.60f;

// but if you need degrees, the multiplier is 180/(pi*2048)
float f_degrees = i * 0.027976f;

Message 64 / Parameter 1:
Orientation in Quaternions

fo 00 21 42 40 01 <14-bit w> <14-bit x> <14-bit y> <14-bit z> f7
(240 @ 33 66 64 1 <14-bit w> <14-bit x> <14-bit y> <14-bit z> 247)

[15 bytes]

Quaternion coefficients are sent in the Q2.11 format, such that:

R = w + 1i.x + j.y + k.z

12

Message 64 / Parameter 2 :
Orientation in Orthogonal Matrix

f0 00 21 42 40 02 <14-bit xx> <14-bit xy> <14-bit xz>
<14-bit yx> <14-bit yy> <14-bit yz>
<14-bit zx> <14-bit zy> <14-bit zz> f7 [25 bytes]

This is a 3x3 rotation matrix that can be multiplied by a 3D coordinate to change its frame of
reference. Reading each row as a 3D unit vector for X, Y, and Z, it gives the body-to-world
transformation.

Because this is an orthogonal matrix, the inverse matrix (for world-to-body transformation) is
the transpose of this one, found by reading each column as a 3D unit vector.

13

Message 65 : Raw data response

f0 00 21 42 41 <sensor id> <timestamp> <16-bit x> <16-bit y> <16-bit z> f7
(240 @ 33 66 65 <sensor id> <timestamp> <16-bit x> <16-bit y> <16-bit z> 247)

[17 bytes]

Sent asynchronously as soon as data is ready. The timestamp increments every millisecond, so it
wraps every 128mes. This is frequent enough that there will be no more than one wrap-around
between sensor readings.

sensor ID device sensor

0 near-end sensor accelerometer
1 gyroscope

2 top sensor accelerometer
3 compass

4 far-end sensor accelerometer
5 gyroscope

Signed 16-bit data is arranged as follows:

First byte 0000 QOMX
Second byte @XXX XXXX
Third byte BXXX XXXL

These numbers can be converted to a floating-point number using the following code.
Brackets are added for clarity:
int i = (16384 * first_byte) + (128 * second_byte) + third_byte;

if (i >= 32768) { i -= 65536; }
float f = i / 32768.0f;

Message 66 : Readback data response

fo 00 21 42 42 <parameter> <value> 7
(240 @ 33 66 66 <parameter> <value> 247)

Sentin response to a Message 2 readback request. Responses to a string of requests are sent
individually.

14

Appendix:

MIDI Device Inquiry

The head tracker responds to a standard MIDI Device Inquiry message with a 17-byte reply,
which may be used to determine its hardware revision and firmware version.

In response to:

fo 7e 01 06 01 f7

(240 126 1 6 1 247)

or:

fo 7e 7f 06 o1 {7
(240 126 127 6 1 247)

an attached head tracker responds:

fo 7e 01 06 02
00 21 42
00 00
[hw] o0
[min] [maj] @0 00
7

(240 126 1 6 2
@ 33 66
0 0
[hw] ©
[min] [maj] © ©
247

: Supperware System Exclusive manufacturer ID
: Device family code

[hw] = Device’s hardware revision code
[min], [maj] = Firmware’s minor and major revision numbers

: Supperware System Exclusive manufacturer ID
: Device family code

[hw] = Device’s hardware revision code
[min], [maj] = Firmware’s minor and major revision numbers

For example, version 0.10 of firmware installed on Issue 2 hardware will return the following:

fo 7e 01 @6 02 00
(2401271 6 2 0

21 42 00 00 02 00 Ga 00 00 00 7
33 66 e o 2 0 1o o © © 247)

15

Appendix:
Using the head tracker with a UART

The head tracker will connect either to a USB host or a UART (universal asynchronous
receiver/transmitter). The latter is more convenient for embedded projects. UART mode cannot
be used to perform firmware upgrades (which are beyond the scope of this document anyway)
but all other features are available.

The head tracker should be connected as follows:

VBUS ’
USB-A
HOST DM ¢
CONNECTOR P HEAD TRACKER
ON YOUR >
EQUIPMENT GND
—

e A USB-A connector is be placed on your equipment to accept an ordinary USB cable.

e The USB 'DM' (or D-) pin connects to your equipment's receiver line, to carry data from
the head tracker.

e The USB 'DP' (or D+) pin connects to your equipment's transmitter line, to carry data to
the head tracker.

A more comprehensive schematic appears at the end of this section.

VBUS, GND, and chassis

To power the head tracker, VBUS must provide between 4 and 6 volts. The maximum current
draw will be 30mA. Your microcontroller must be able to turn this VBUS on or off remotely, as
the timing of power-on and data transmission is very important.

The recommended schematic delivers up to 30mA through a current-limiting load switch. If a
user might expect to charge their phone over the socket, you should consider embedding a
USB power delivery controller, and then you might as well be speaking USB.

The connector's chassis should not be left floating, but ideally should connect to your own
chassis net, and be kept away from sensitive electronics. If there is no suitable chassis, connect
the USB chassis to signal ground via a 10k resistor as shown. This does not provide a shield
against electrostatic interference, but will protect your equipment from static discharges by

16

gently ensuring equipotential at each end of the cable before more sensitive lines are
connected.

Handshaking

The head tracker is designed to work in UART mode in response to the following procedure:

Apply power to the head tracker, and wait 200ms for it to wake up.

2. Send a System Exclusive message to make the head tracker work in the intended way.
Wait 100ms for a reply.

3. Ifnoreplyisreceived, go back to step 2. Retry up to 15 times.

4. After 15 failed attempts, power down, wait 150ms, and go back to step 1.

The head tracker will start to respond at the intended interval, usually on around the tenth
attempt after power on. It is very important to follow a procedure similar to the one above,
because the head tracker will give up attempting to communicate with a UART, and will
default to USB mode, unless both of these occur:

e The DP and DM lines are read high within 50ms of powering up;
e |treceives a complete message on the UART within 250ms of powering up.

DM and DP

The UART is intended to work at 3.3V, but is 5V-tolerant. Driving more than 5V or less than 0V
onto the DM or DP lines may permanently damage the head tracker.

The UART runs at 115200 baud, with one start bit and one stop bit. Your device must provide
pull-up resistors if your microcontroller doesn't provide them itself. Values of around 10-20
kiloohms, attached to a 3.3V rail, are recommended.

Messages sent and received in UART mode are the same as standard MIDI, albeit at a higher
rate. The head tracker's own baud rate is accurate to £1%. This may inform your design
approach if your UART operates on a marginal tolerance.

As there is no flow control, your equipment should wait around 1ms between transmitting
each System Exclusive message to give the head tracker time to process it. This delay may be
added to a precalculated block of set-up data by padding with twelve zero bytes between
System Exclusive frames. As these bytes are not part of a valid MIDI message, they will take up
time on the bus, but the head tracker will ignore them.

17

5V

+3V3

IOK[]IOK
U
BD2222G CN
1 N our K8 HTRK-VBUS O VBUS
] 100R
LIM = TINEES T } O DM
HTRK-TX e o
T _ T
HTRK-PWR 33}= EN oc 4 100R.
GND O GND
X CHASSIS
[:IIOOK S SE
1
| |
10K
DGND DGND

Recommended schematic for interfacing your own equipment
to the head tracker in UART mode

18

